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Hydrodynamic attenuation 
The nature of hydrodynamic attenuation was clearly illustrated in a simple way by Sir 

Geoffrey Taylor in 1939[6]. In Fig. 1 are shown pressure-distance profiles of a shock wave in a 
fluid at two successive times. The velocity of propagation of a point Q immediately behind the 
shock front is the local sound velocity, c, plus the particle velocity, u, with which it is carried 
along behind the shock. It is readily shown that u + c > R, the propagation velocity of the shock 
itself. As the rarefaction overtakes the shock front, the shock amplitude is diminished. If we 
assume that the diminution in shock amplitude which occurs when point Q overtakes the shock 
front is exactly equal to -!J.s aPt ax, where the derivative is evaluated immediately behind the 
shock front, we can readily determine the rate of decay of the shock. Point Q travels the 
distance !J.s +!J.X in the same time it takes the shock front to travel the distance !J.X, i.e. 

., For !J.p = -!J.s apt ax, this gives 

A _!J.X _!J.X +!J.s 
~t - R - u + c . 

!J.P DP (u + c - R) ap 
!J.X~DX = - R ax' (2.1) 

The difference u + c - R increases monotonically with the curvature of the Rankine-Hugoniot 
p-v curve, so equation (2.1) shows that shock decay is rapid where the thermodynamic 
derivative a2pt av2 is large in the shocked state and apt ax is large, i.e. the shock is a sharp spike. 

A. J. Harris in 1942 and 1943 derived an exact equation for decay of shock waves in fluids 
for plane, cylindrical and spherical geometries, assuming that the shock front is discontinuous 
and flow behind the shock is isentropic [7, 8]. His result for a fluid with an arbitrary equation of 
state is [8]: 

(2.2) 

where n = 1 for plane waves, 2 for cylindrical waves and 3 for spherical waves, v is specific volume, 
and X is the position of the shock front. When n = 2 or 3, the second term on the right provides 
'geometric attenuation', which exists even for infinitesimal waves. The first term on the right-hand 
side of equation (2.2) vanishes like u2

, so it is negligible for infinitesimal waves. 
Equation (2.2) with n = 1 contains terms in addition to those in equation (2.1). In the 

approximation of equation (2.1), the reflected wave produced when the overtaking rarefaction 
reaches the shock front is neglected. The amplitude of this reflected wave is of the order u3

, so 
equations (2.1) and (2.2) differ sensibly only for strong shocks. 

Maxwell attenuation can be illustrated by a simple relaxing fluid. The relation between 
pressure and density under isentropic conditions for a non-relaxing fluid is dPtdp = c2 or 
p = c2p, where the dot denotes the convective derivative and c is sound velocity. In this case 
the equations of continuity and motion can be combined to give a pair of equations for 

x ---. 
Fig. I. Decay of a plane shock wave. A and B are wave profiles at times t andt + I1t. respectively. I1t = time 

required for the point Q to overtake Il;e shock front. 
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travelling waves [9]. For waves propagating in the + x direction, this equation is 

D(u + l),,; 0 
Dt 

(2.3) 

where D/Dt = at + (u + £) _al ax, and I = f _~?iJ!!:. A state~ent equivalent to equation (2.3) is that 
u + I = const. on every C+ characteristic. 

Suppose now that every incremental change in pressure in an element of the fluid is 
followed by relaxation to some equilibrium state, say Ps(p). Then the relation between P and p 
has the form 

(2.4) 

where F(P, p) is the relaxation function. For example, a simple approximation to F might be 

F = IP - Ps(p)IIT (2.5) 

where T is a constant relaxation time. 

When equation (2.4) is combined with the plane flow equations, equation (2.3) is replaced by 

D -(u+l)=-F7pc Dt . (2.6) 

For small disturbances 1= tJ.Plpc with p and c approximately constant. Moreover, u = tJ.Plpc, 
so equation (2.6) becomes 

D(tJ.P)/Dt = - F72 (2.7) 

or 

D(tJ.P)/Dx = - Fl2c (2.8) 

where c is the propagation velocity of small disturbances. Equation (2.7) is analogous to 
equations which describe other decay processes, say the decay of a radioactive population, N: 
dNldt = - AN. The difference is that the time derivative in this case is a directional derivative 
along the path of wave propagation. If one considers a layer of finite thickness, ~x, the 
wavefront takes a finite time, tJ.xlc, to cross the layer, and during this time the wave amplitude 
decays an amount FtJ.x/2c. However small ~x may be, this decay occurs and accumulates from 
one layer to the next; or, from equation (2.4), if a mass element is out of equilibrium, i.e. P~ Ps, 

P undergoes a reversible change c2ptJ.t in time tJ.t, and in addition it changes by - FtJ.t. The 
latter change occurs even if p = O. 

It will be shown in the next section how geometric, hydrodynamic and Maxwell attenuation 
combine to produce the net decay of a shock wave in a solid whenever pressure in the shock 
depends on variables other than material density. 

3. SHOCK WAVE DECAY 

The flow equations for plane, cylindrical or spherical geometry in which only one space 
variable occurs can be written: 

Conservation of mass: 

dp + P au +. (n - l)pu = o. 
dt ax x 

(3.1) 

Equation of motion: 

(3.2) 


